Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-24, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109185

RESUMO

SARS-CoV-2 is a global problem nowadays. Based on studies, some human receptors are involved in binding to SARS-CoV-2. Thus, the inhibition of these receptors can be effective in the treatment of Covid-19. Because of the proven benefits of antimicrobial peptides (AMPs) and the side effects of chemical drugs, they can be known as an alternative to recent medicines. RCSB PDB to obtain PDB id, StraPep and PhytAMP to acquire Bio-AMPs information and 3-D structure, and AlgPred, Toxinpred, TargetAntiAngio, IL-4pred, IL-6pred, ACPred and Hemopred databases were used to find the best score peptide features. HADDOCK 2.2 was used for molecular docking analysis, and UCSF Chimera software version 1.15, SWISS-MODEL and BIOVIA Discovery Studio Visualizer4.5 were used for mutation and structure modeling. Furthermore, MD simulation results were achieved from GROMACS 4.6.5. Based on the obtained results, the Moricin peptide was found to have the best affinity for ACE2. Moreover, Bacteriocin leucocin-A had the highest affinity for GRP78, Cathelicidin-6 had the best affinity for AT1R, and Bacteriocin PlnK had the best binding affinity for TMPRSS2. Additionally, Bacteriocin glycocin F, Bacteriocin lactococcin-G subunit beta and Cathelicidin-6 peptides were the most common compounds among the four receptors. However, these peptides also have some side effects. Consequently, the mutation eliminated the side effects, and MD simulation results indicated that the mutation proved the result of the docking analysis. The effect of AMPs on ACE2, GRP78, TMPRSS2 and AT1R receptors can be a novel treatment for Covid-19.Communicated by Ramaswamy H. Sarma.

2.
Avicenna J Med Biotechnol ; 13(3): 107-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484639

RESUMO

BACKGROUND: The cause of COVID-19 global pandemic is SARS-CoV-2. Given the outbreak of this disease, it is so important to find a treatment. One strategy to cope with COVID-19 is to use the active ingredients of medicinal plants. In this study, the effect of active substances was surveyed in inhibiting four important druggable targets, including S protein, 3CLpro, RdRp, and N protein. RdRp controls the replication of SARS-CoV-2 and is crucial for its life cycle. 3CLpro is the main protease of the virus and could be another therapeutic target. Moreover, N protein and S protein are responsible for SARS-CoV-2 assembly and attaching, respectively. METHODS: The 3D structures of herbal active ingredients were prepared and docked with the mentioned SARS-CoV-2 proteins to obtain their affinity. Then, available antiviral drugs introduced in other investigations were docked using similar tools and compared with the results of this study. Finally, other properties of natural compounds were uncovered for drug designing. RESULTS: The outcomes of the study revealed that Linarin, Amentoflavone, (-)-Catechin Gallate and Hypericin from Chrysanthemum morifolium, Hypericum perforatum, Humulus lupulus, and Hibiscus sabdariffa had the highest affinity for these basic proteins and in some cases, their affinity was much higher than antiviral medicines. CONCLUSION: In addition to having high affinity, these herb active ingredients have antioxidant, vasoprotective, anticarcinogenic, and antiviral properties. Therefore, they can be used as extremely safe therapeutic compounds in drug design studies to control COVID-19.

3.
Inform Med Unlocked ; 23: 100515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33521241

RESUMO

Coronavirus disease 19 (COVID-19) is the latest pandemic resulted from the coronavirus family. Due to the high prevalence of this disease, its high mortality rate, and the lack of effective treatment, the need for affordable and accessible drugs is one of the main challenges in this regard. It has been proved that RdRp, 3CL, Spike, and Nucleocapsid are the most important viral proteins playing vital roles in the processes of proliferation and infection. Therefore, we started studying a wide range of bio-peptides and then conducted molecular docking analyses to investigate their binding affinity for the inhibition of these proteins. After obtaining the best bio-peptides with the highest affinity scores, they were examined for further study and then manipulated to eliminate their side effects. Additionally, the molecular dynamic simulation was performed to validate the structure and interaction stability. The results of this study reveal that glycocin F from Lactococcus lactis and lactococcine G from Lactobacillus plantarum had the high affinities to bind to the viral proteins, and the manipulation of their sequence also led to the side effects' elimination. In addition, in some cases, their affinities to attach the SARS-CoV-2 proteins have increased. It seems that these two drugs which were discovered and designed, are optimal for treating the COVID-19 infection. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects.

4.
Inform Med Unlocked ; 20: 100407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32835083

RESUMO

The SARS-CoV-2 causes severe pulmonary infectious disease with an exponential spread-ability. In the present research, we have tried to look into the molecular cause of disease, dealing with the development and spread of the coronavirus disease 2019 (COVID-19). Therefore, different approaches have investigated against disease development and infection in this research; First, We identified hsa-miR-1307-3p out of 1872 pooled microRNAs, as the best miRNA, with the highest affinity to SARS-CoV-2 genome and its related cell signaling pathways. Second, the findings presented that this miRNA had a considerable role in PI3K/Act, endocytosis, and type 2 diabetes, moreover, it may play a critical role in the prevention of GRP78 production and the virus entering, proliferation and development. Third, nearly 1033 medicinal herbal compounds were collected and docked with ACE2, TMPRSS2, GRP78, and AT1R receptors, which were the most noticeable receptors in causing the COVID-19. Among them, there were three common compounds including berbamine, hypericin, and hesperidin, which were more effective and appropriate to prevent the COVID-19 infection. Also, it was revealed some of these chemical compounds which had a greater affinity for AT1R receptor inhibitors can be suitable therapeutic targets for inhibiting AT1R and preventing the adverse side effects of this receptor. According to the result, clinical assessment of these three herbal compounds and hsa-miR-1307-3p may have significant outcomes for the prevention, control, and treatment of COVID-19 infection.

5.
Cell J ; 21(4): 451-458, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31376327

RESUMO

OBJECTIVE: Gastric cancer is a multifactorial disease. In addition to environmental factors, many genes are involved in this malignancy. One of the genes associated with gastric cancer is CD44 gene and its polymorphisms. CD44 gene plays role in regulating cell survival, growth and mobility. The single nucleotide polymorphism (SNP) rs8193, located in the CD44 gene, has not been studied in gastric cancer patients of the Iranian population. The present study aims to study this polymorphism in 86 gastric cancer patients and 96 healthy individuals. MATERIALS AND METHODS: In this cross-sectional case-control study, rs8193 polymorphism was genotyped by allele specific primer polymerase chain reaction (ASP-PCR) technique. The obtained data were statistically analyzed. To find the potential mechanism of action, rs8193 was bioinformatically investigated. RESULTS: rs8193 C allele played a risk factor role for gastric cancer. Patients carrying this allele were more susceptible to have gastric cancer, with lymph node spread. On the other hand, rs8193 T allele, a protective factor, was associated with a higher chance of accumulation in the lower stages of cancer. C allele might impose its effect via destabilizing CD44 and miR-570 interaction. CONCLUSION: rs8193 is statistically associated with the risk of malignancy, lymph node spread and stage of gastric cancer in Iranian population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...